Number of heartbeats in a lifetime (using 'more exact numbers)
(77 years) $\times\left(3.15 \times 10^{7}\right.$ s/year $) \times(1$ beat $/ \mathrm{s})=2.43 \times 10^{9} \approx \underline{10^{9}}$ heartbeats!
$\mathrm{C}=2 \pi \mathrm{r} \quad$ Continental US $\sim=3000$ miles 1 mile $=5280 \mathrm{ft} \quad 14$ inches $\approx 1 \mathrm{ft}$

Estimate:

$C=2 \pi r=2(3)(1)=\mathbf{6 f t}$
Distance: 3000 miles = \qquad ft $\quad 3000 \mathrm{mi} \times(5000 \mathrm{ft} / \mathrm{mi})=\left(3 \times 10^{3}\right) \times\left(5 \times 10^{3}\right)=$ $\approx 15 \times 10^{6} \mathrm{ft}=$ total distance
\# rev $=15 \times 10^{6} \mathrm{ft} \times(1 \mathrm{rev} / 6 \mathrm{ft})=2 \times 10^{6}$ revolutions. Answer $\approx \underline{10^{6}}$ revolutions

Use more exact numbers:
$\mathrm{C}=2 \pi \mathrm{r} \quad$ Continental US $\sim=3000$ miles $\quad 1$ mile $=5280 \mathrm{ft} \quad 14$ inches $=1.16 \mathrm{ft}$ $C=2 \pi r=2(3.14)(1.16)=7.28 \mathrm{ft}$

Distance: 3000 miles $=$ \qquad $\mathrm{ft} \quad 3000 \mathrm{mix}(5280 \mathrm{ft} / \mathrm{mi})=\mathbf{1 . 5 8 \times 1 0 ^ { 7 } \mathbf { f t }}=$ total distance $\# \mathrm{rev}=1.58 \times 10^{7} \mathrm{ft} \times(1 \mathrm{rev} / 7.28 \mathrm{ft})=2.17 \times 10^{6}$ revolutions. Answer $=\underline{10^{6}}$ revolutions

